Approaching Zero-Energy in Commercial Structures (or any type for that matter)

...is a building with very low loads...

NET-ZERO ENERGY BUILDING

A zero net energy building (ZNE), also known as a net-zero energy (NZE) building, is a building with very low loads and a renewable energy supply, such as photovoltaic (PV) panels. Of course the PV will supply no energy at night and less energy in the winter, when the building consumes grid electric power. Conversely, when there is excess energy, it is fed back to the grid by the building systems. To qualify as an NZE building, the total energy used by the building in a year must be less than or equal to the renewable energy created on site in the same year.

Approaching Zero-Energy in Commercial Structures (or any type for that matter)

Climate Zone
 Building Envelope
 Insulation – R Value
 Fenestration – U Value and SHGC
 Air/Vapor Barriers
 Lighting and Power
 Mechanical System Efficiency

5. Energy Modeling vs Prescriptive 6. Passive Design Considerations Pre-K Center, Brooklyg, New York

First, A Little History

Williamsburg Child Care Center, Brooklyn

This 19,200-square-foot public child care facility accommodates children of a variety of ages. The three-story Center is largely devoted to classroom but also includes administrative offices, facility support rooms, ground-level and roottop play areas and a kitchen.

With children's well-being foremost, the design prioritizes a healthy indoor environment. Green materials were selected after a rigorous review of their potential to minimize the emission of toxins or volatile organic compounds. Natural light, introduced in several ways, conserves energy by reducing the use of electric lighting and enhances the quality of the learning environment. A glazed interior light well, toward the rear of the site, extends from the roof to the ground level. It introduced daylight to the inner core of the facility, which is walled-in at the rear and both sides by neighboring buildings constructed to the lot lines.

The compact shape, light shelves, and a light well allow the center to make the most of natural light and reduce energy consumption.

At the Williamsburg Child Care Center, recycled materials can be found in the carpet, rubber flooring, ceiling panels, concrete, steel, walls, bathroom tiles and partitions, and furniture.

The bamboo millwork and linoleum flooring in the center are made of materials that grow back quickly, reducing the use of non-renewing resources.

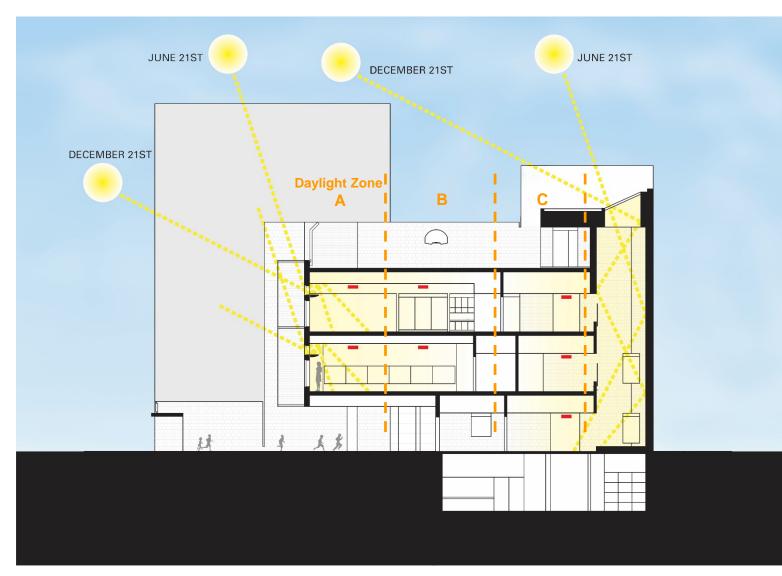
Indoor air quality is improved by the walk-off mats at the entrances, low-emitting materials and finishes and separate ventilation for services areas.

CLIAMATE CHANGES: from the light-colored, highlyreflective roofing to the perimeter planting with its structural soil, the Williamsburg Child care center is designed to mitigate the Urban Heat Island effect by reducing atmospheric temperature.

Insulation – Increased R-Value Lighting – Occupancy Controls Mechanical System Efficiency Fenestration – Daylight Transmittance Lighting – Light Reduction Controls System Commissioning

HIGH PERFORMANCE BUILDINGS 1999

Winging it at the time



HIGH PERFORMANCE BUILDINGS 1999

Williamsburg Child Care Center, Brooklyn

This 19,200-square-foot public child care facility accommodates children of a variety of ages. The three-story Center is largely devoted to classroom but also includes administrative offices, facility support rooms, ground-level and roottop play areas and a kitchen.

With children's well-being foremost, the design prioritizes a healthy indoor environment. Green materials were selected after a rigorous review of their potential to minimize the emission of toxins or volatile organic compounds. Natural light, introduced in several ways, conserves energy by reducing the use of electric lighting and enhances the quality of the learning environment. A glazed interior light well, toward the rear of the site, extends from the roof to the ground level. It introduced daylight to the inner core of the facility, which is walled-in at the rear and both sides by neighboring buildings constructed to the lot lines.

The compact shape, light shelves, and a light well allow the center to make the most of natural light and reduce energy consumption.

At the Williamsburg Child Care Center, recycled materials can be found in the carpet, rubber flooring, ceiling panels, concrete, steel, walls, bathroom tiles and partitions,

and furniture.

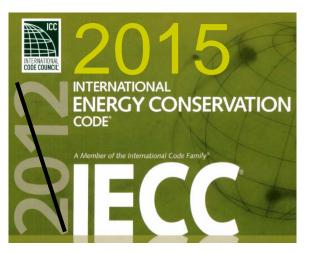
The bamboo millwork and linoleum flooring in the center are made of materials that grow back quickly, reducing the use of non-renewing resources.

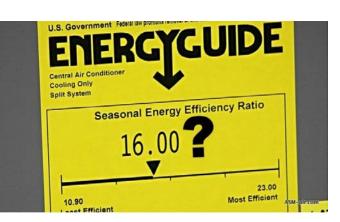
Indoor air quality is improved by the walk-off mats at the entrances, low-emitting materials and finishes and separate ventilation for services areas.

CLIAMATE CHANGES: from the light-colored, highlyreflective roofing to the perimeter planting with its structural soil, the Williamsburg Child care center is designed to mitigate the Urban Heat Island effect by reducing atmospheric temperature.

Relationship to Existing Codes and Standards Relationship to Green Building Rating Systems ASHRAE 62-1989 USGBC LEED 2.0 2000 in development

HIGH PERFORMANCE BUILDINGS 1999


2018 - How Many Are There?!



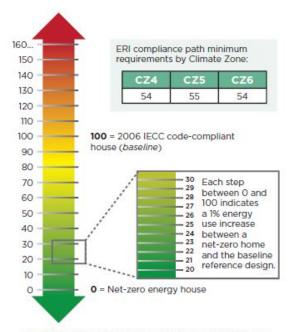
2012 IECC Commercial Scope and Envelope Requirements

CODES AND STANDARDS

ENERGY RATING INDEX COMPLIANCE ALTERNATIVE

The Energy Rating Index (ERI) is a new compliance path that provides designers with more flexibility than the prescriptive path. The ERI is similar to the RESNET HERS index:

- Each home is rated and given a score on the scale that coincides with its potential energy use.
- A score of 0 is the rough equivalent of a net-zero home, meaning that the home produces an equivalent amount of energy to the amount it uses.
- The baseline ERI reference design (score of 100) is a theoretical home that meets minimum 2006 IECC prescriptive requirements.
- Each incremental integer value equals 1% additional total energy use of the rated design, relative to the reference design.


ERI differs from the performance and prescriptive path in several ways. Firstly, ERI considers all of the energy used in the residence, not just the fuel used in heating, cooling and service hot water heating systems. It also takes into account major appliances and plug loads. ERI allows equipment and appliance efficiencies to be involved in tradeoffs.

ERI still requires that mandatory provisions of the code be met. However, for building thermal envelope efficiency and SHGC requirements, the ERI method references the 2009 IECC tables, which are more lenient.

DOCUMENTATION AND COMPLIANCE

ERI ratings must be third party verified. Currently, projects that choose this pathway must employ a HERS rater to inspect the residence for proper insulation, provide the blower door test and provide the rating.

In Climate Zone 5, a rating of 55 or below meets compliance and in Climate Zones 4 and 6 a rating

The ERI pathway is very similar to the HERS rating index, with 0 being a net-zero design and 100 being the standard reference design

of 54 or below complies. Having a HERS Rater as part of the design team can be a great resource to help simplify the compliance process and deliver a higher-performing building.

The code stipulates documentation, software, and compliance report requirements similar to those in the performance path, although this process is simplified by having a third-party rater involved. The applicant will still be required to file the results with the code official.

ENERGY CODE ADOPTION BY STATE

https://www.energycodes.gov/status-state-energy-code-adoption

Updated as of December 15, 2017

Where is Arizona?

Status of State Energy Code Adoption | Building Energy Codes Program

1/19/2018

2/3

2009 International Energy Conservation Code (IECC)

《 Back to U.S. map	ARIZONA
Click a county to see t	the requirements for its climate zone.
Select a state and county t	o view its minimum insulation requirements.
L	Arizona ▼ Yavapai ▼
Visit the <u>Status of State Energy Cod</u>	les website to see if Arizona has adopted the 2009 IECC.

Arizona is a "Home-Rule" State

Climate Zone 3 nate Zone 4 (Except Marine) value 38 me Wall R-value 13 R-value ¹ 5/10

Climate Zone 2

Ceiling R-value	38
Wood Frame Wall R-value	13
Mass Wall R-value ⁱ	5/10
Floor R-value	19
Basement Wall R-value ^c	10/13
Slab R-value ^d , Depth	10, 2 ft
Crawlspace Wall R-value ^c	10/13
Fenestration U-Factor ^b	0.35
Skylight U-Factor ^b	0.60
Glazed fenestration SHGC b, e	NR

Climate Zone 5 & 4 Marine

a. R-values are minimums. U-factors and SHGC are maximums. R-19 batts compressed into a nominal 2x6 framing cavity such that the R-value is reduced by R-1 or more shall be marked with the compressed batt R-value in addition to the full thickness R-value.

b. The fenestration U-factor column excludes skylights. The SHGC column applies to all glazed fenestration.

c. "15/19" means R-15 continuous insulated sheathing on he interior or exterior of the home or R-19 cavity insulation at the interior of the basement wall. "10/13" means R-10 continuous insulated sheathing on the interior or exterior of the home or R-13 cavity insulation at the interior of the basement wall.

d. R-5 shall be added to the required slab edge R-values for heated slabs. Insulation depth shall be the depth of the footing or 2 feet, whichever is less in zones 1 through 3 for heated slabs.

e. There are no SHGC requirements in the Marine zone.

f. Basement Wall Insulation is not required in warm-humid locations.

g. Or insulation sufficient to fill the framing cavity. R-19 is

CMSA

PRESCRIPTIVE REQUIREMENTS

Where is Yavapai County? 2006 IECC with Amendments

•	Climate Zone 2 Below 3500			
•	Climate Zone 3			
-	Climate Zone 4	Above 35	00	
	Ceiling R-value	38	30	
	Wood Frame Wall R-value	13	13	
	Mass Wall R-value ⁱ	5/10	4/6	
	Floor R-value	19	13	
	Basement Wall R-value ^c	10/13	0	
	Slab R-value ^d , Depth	10, 2 ft	0	
	Crawlspace Wall R-value ^c	10/13	0	
	Fenestration U-Factor ^b	0.35	0.65	
	Skylight U-Factor ^b	0.60	0.75	
	Glazed fenestration SHGC ^{b, e}	NR	0.30	

Climate Zone 5 & 4 Marine

Later Code Adoptions IECC 2015

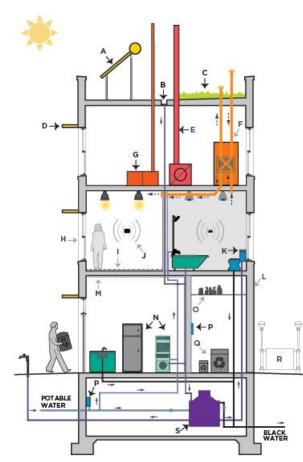
Commercial

Residential

R-38	R-38
R-13 + R-3.8 CI or R20	R-13 + R-3.8 Cl or R20
R-9.5 CI	R-11.4 CI
R-30	R-30
R-7.5 CI	R-10 CI
R-19, 2 ft	R-15, 2 ft
R-7.5	R-10
0.35	0.35
0.50	0.50
0.40	0.40

Camp Verde 2012 IECC with Amendments Clarkdale 2006 with Amendments Prescott 2012 with Amendments Sedona ...

PRESCRIPTIVE REQUIREMENTS



WHOLE BUILDING APPROACH

The "whole-building approach" is the idea that all systems such as lighting, HVAC, plumbing, and envelope are all interconnected and work together in an efficient building.

Changing one aspect of the building envelope may have unintended sequences elsewhere. For example, increasing the efficiency of the thermal envelope will lead to a lower defined on the boiler, but If the boiler is already over-sized, it will short-cycle more and run less efficiently. Converse swapping out inefficient, heatproducing incandescent light bulbs with LEDs will lower the amount of heat the building, and the boiler will have to work harder to compensate.

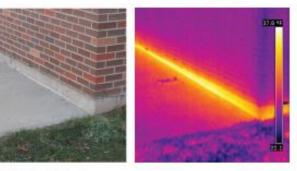
Consider all of a building's systems at once and be aware of how changes in one show may affect other systems. The ultimate goal is *synergy* between systems, meaning that each system in cooperation with the others, creating a result that is greater than the sum of its parts. For example, upgrade ultimate simultaneously installing a smaller, more efficient boiler will have a positive to the building's performance that would not be possible separately.

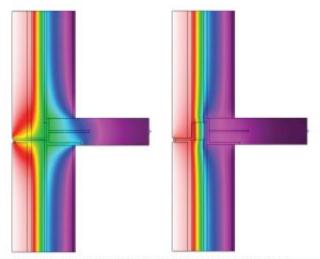
- Solar Thermal Provide renewable so water heating
- B Rain Water Harvest Uses water for tollets + gard C White Roof or Green Roof
- Reduces urban heat island effect D Sun Control Devices
- Reduce solar heat gain in summer, direct daylight into room to lower lighting loads
- E Condensing Boller Reduces energy use for heat + hot water supply
- F Heat Recovery Ventilation or Controlled Exhaust Ventilation Reduces energy use
- G Cogeneration Uses both heat + electric power from local generator
- H High Performance Window Increase comfort + save energy
- I FSC Wood Flooring Supports sustainable forestry
- J Occupancy + Daylighting Controlled Lighting Reduces energy use, improves Indoor environment
- K Low Water/Dual-Flush Tollet Reduces water use
- L Continuous High R-value Insulation Increases comfort + saves
- energy Recycled Celling Tiles Reduce resource use
- ENERGY STAR Appliances Reduce electrical + water use
- O Low VOC Green Cleaning Products Improve indoor air quality
- P Meters + Submeters Increase awareness of energy + water use
- Q Recycling
- Reduces resource use R Access to Mass Transit
- Reduces energy use
- Greywater System Recycles water to tollets +

The whole building approach sees a building as an interconnected network of systems that all affect each other. Changes in any one system can impact how other, seemingly unrelated systems, function as well.

...is the idea that all systems are interconnected...

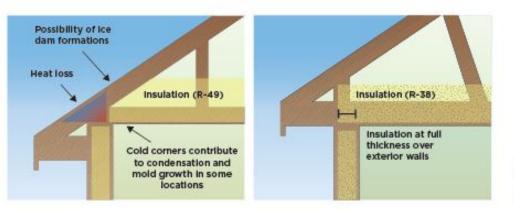
oMSA





THERMAL BRIDGING

Thermal bridging occurs when a poorly insulating material allows heat flow across a thermal barrier. To prevent thermal bridging you must provide a thermal break, such as continuous insulation, seen in the illustration to the right


Thermal bridging at slab edge.

Thermal modeling demonstrates how heat transfers through a thermal bridge (left) and how effective construction mitigates heat loss.

R402.2.1 CEILINGS WITH ATTIC SPACES

Ceilings with attic spaces can comply in two ways. The first is to follow the requirements in R402.1.2, which requires an R-Value of 49. Alternately, R-38 is permissable as long as it extends over the wall top plate at the eaves. Note that this reduction cannot be used if using the U-factor alternative or the total UA alternative.

An "energy truss" can prevent cold corners by allowing the celling insulation to overlap with the wall insulation

CURRENT ISSUES

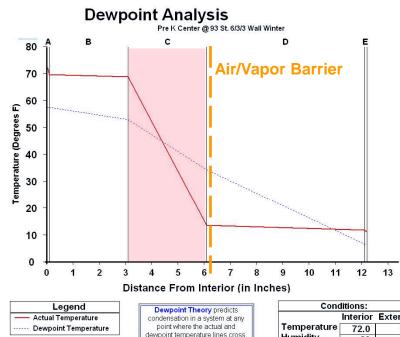


Figure 2: THERM results. Line of condensation at an interior surface shows where there is risk of condensation.

Legena	Dewpoint Theory predicts	
 Actual Temperature 	condensation in a system at any	870-13
- Dewpoint Temperature	point where the actual and	Tempe
	dewpoint temperature lines cross.	Humidi

Conditions:					
	Interior	Exterior			
Temperature	72.0	11			
Humidity	60	80			

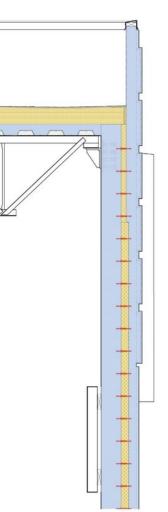
	-				li i	Interface		erature Dewpnt	Accum (oz/day-sqft
_	Component Name	Thickness	122-123/12/0/0/0S0	Rep	-	-A	72.00	57.32	0.000
A	Interior Air Film	0.100	0.68	0.001		AB	69.50	57.31	0.000
в	Concrete	3.000	0.24	0.930		BC	68.61	52.83	0.000
C	FOAMULAR 250	3.000	15.00	2.700			13.39	34.18	* 0.005
D	Concrete	6.000	0.48	1.860	2		11.63	6.48	0.000
Ε	Out Air Film Winter	0.100	0.17	0.001			11.00	6.45	0.000
F						FG	11.00	0.45	0.000
G						GH			
Н					2				
1					-	_ IJ			
J					-	JK			
K					-	- KL			
L					-	_ L-			
	TOTAL	12.200	16.57	5.492		* Ind		of condensation	to - tight

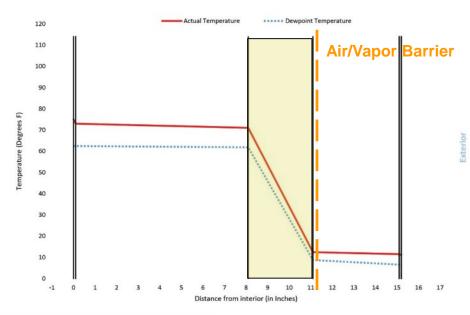
NOTICE: This calculation is based on the theory of Water Vapor Migration presented in the ASHRAE 1993 Fundamentals Handbook. Actual performance may vary depending upon air infiltration. workmanship, and building materials.

BUILDING ENVELOPE

DEWPOINT ANALYSIS - WINTER PS 81 GYM QUEENS, NY

Interior





	Conditions:	Interior	Exter	rior
	Temperature	75	11	
	Humidity	65	80)
	Component Name	Thickness	R-value	Rep
A	Interior Air Film	0.1	0.68	0.001
В	Interior Concrete	8	0.64	2.48
С	ISOMASS	3	19.5	100
D	Exterior Concrete	4	0.32	1.24
Е	Exterior Air Film Winter	0.1	0.17	0.001
	TOTAL	15.2	21.31	103.7

THERM results. Line of condensation at an interior surface shows where there is risk of condensation.

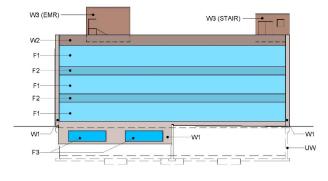
BUILDING ENVELOPE

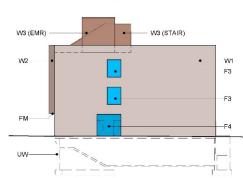
··· 0 0	wrightsoft Building Analysis Upper Level Oak Creek Heating and Cooling	Job: Date: Aug 14, 2013 By: Todd Bean	H wrightsoft AED Assessment Upper Level Oak Creek Heating and Cooling	Job: Date: Aug 14, 2013 By: Todd Bean	
	PO Box 3604, Sedona, AZ 86340 Phone: (928) 204-1120 Fax: (928) 204-1096 Email: oakoreeksm@gmail.com Web: www.oakoreeksheetme	tal.com	PO Box 3604, Sedona, AZ 86340 Phone: (928) 204-1120 Fax: (928) 204-1095 Email: oakcreeksm@gr	mail.com Web: www.oakoreeksheetmetal.com	
	Project Information For: Szerbaty Residence Morring Sky Dr, Cottorwood, AZ 86326		Project Inform For: Szerbaty Residence Morning Sky Dr, Cottorwood, AZ 86326		
	Design Conditions Location: Cottonwood, AZ Elevation: Indoor: Indoor temperature (°F) Design TD (°F) Cottonwood, AZ Elevation: Indoor: Indoor temperature (°F) Design TD (°F) Outdoor: Heating Drybul (°F) Cooling 29 29 (H) Dailytrange (°F) - 64 Construction quality Wind speed (mph) 15.0	Heating Cooling 70 75 50 27 50 50 48.7 -34.5 Simplified Average 0	Cottonwood, AZ I Elevation: 35 ℃N Latitude: 35 ℃N Outdoor: Heating Drybulb (℃F) 20 Dailytange (℃F) - Dailytange (℃F) - Utbulb (℃F) -	tions oor: Heating Cooli ndoor temperature (°F) 70 27 Design TD (°F) 50 22 Relative humidity (%) 50 50 Moisture difference (gr/lb) 48.7 -34 Itration:	
	Component Btuh/ft² Btuh % of load Walls 3.6 3665 17.5 Glazing 14.5 8127 38.7		Wind speed (mph) 15.0 7.5 Test for A dequate Expo Hourly Gazing Load		
	Doors 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 2393 11.4 4 7001 14 812 3.9 11.4 14 7001 14 7001 14 7001 7011 7011 <th 7<="" td=""><td></td><td>2200- 2000- 1800- 1600- 1400-</td><td></td></th>	<td></td> <td>2200- 2000- 1800- 1600- 1400-</td> <td></td>		2200- 2000- 1800- 1600- 1400-	
	Cooling 	n Jacob Cara Unite and Cha Chara Chara	1200- 1000- 400- 400- 200- 400- 200- 400- 200- 400- 200- 400- 200- 400- 200- 400- 200-	on AED limit of 30%.	
	Wrightsoft: Right-Suite® Universal 2013 13 0.01 RSU12478	2013-Sep-20 07:47:26 Page 2	Wrightsoft Right-Suite® Universal 2013 13.0.01 RSU12478	- 2013-Sep-20 0	

ENERGY ANALYSIS/MODELING

2013-Sep-20 07:47:26 Page 2

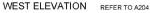
Cooling 75 27 50 -34.5

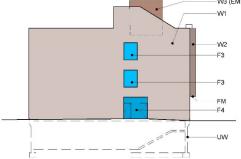

BUILDING ENVELOPE MODELING


92 FT²

100 FT²

GROSS ENVELOPE AREA= 4058 FT²





REFER TO A203

EAST ELEVATION

7231 SF TOTAL ROOF AREA

REFER TO A105

NORTH ELEVATI	ON REFER TO A202	EAST ELEVATION	REFER TO A203
WALL TYPE	AREA	WALL TYPE	AREA
WI	1587 FT ²	W1	2713 FT ²
W2	449 FT ²	¥/2	75 FT ²
W3	462 FT ³	W3	470 FT ²
UW (UNDERGROUND)	859 FT ²	UW (UNDERGROUND)	875 FT ²
FENESTRATION TYPE	AREA	FENESTRATION TYPE	AREA
F1	2546 FT ²	F1	NIA
F2	806 FT ²	F2	N/A

154 FT²

REFER TO A407

AREA

263 FT²

AREA

6524 FT¹

303 FT²

N/A

GROSS ENVELOPE AREA= 6803 FT³

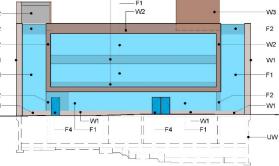
FLOORS (MASS)

GROSS FLOOR (MASS) AREA= 263 FT²

GROSS ROOF AREA = 6527 FT2

REFER TO A105 A208

FLOOR TYPE


ROOF


ROOF TYPE

R2	•		F2 F1 W2			v
F2				L	•	F
W2	-		•		•	-v
VV1	•	•			•	v
F1	- •		•		•	-F
F2				L•		F V
			 F ⊑			—-ı

SOUTH ELEVATION REFER TO A201

NORTH ELEVATION REFER TO A202

SOUTH ELEVATION	REFER TO A201	WEST ELEVATION	REFER TO A204
WALL TYPE	AREA	WALL TYPE	AREA
WI	432 FT ²	WI	2898 FT ⁸
W2	605 FT ²	W2	75 FT ²
W3	296 FT ²	W3	220 FT ²
UW (UNDERGROUND)	1380 FT ²	UW (UNDERGROUND)	916 FT ²
FENESTRATIÓN TYPE	AREA	FENESTRATION TYPE	AREA
F1.	2558 FT ²	F1	NA
F2	631 FT ³	F2	N/A
F3	N/A	F3	92 FT ²
F4	NA	F4	100 FT ²
GROSS EWVELOPE AREA= 5900 FT*		GROSS ENVELOPE AREA= 4301 FT ²	

ENERGY ANALYSIS GENERAL NOTES

ALL CALCULATIONS AND VALUES PER ASHRAE 90.1-2010. CLIMATE ZONE 4A.

12 1.3

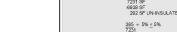
1.4

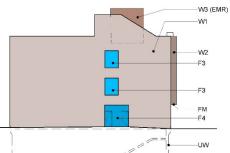
1.5.

(64342) SHUTOFE DAMPERS

[5.4.3.1:) AN BARRER CONSTRUCTION
 THE CONTINUOUS AR BARRER SHALL EXTEND OVER ALL SUBFACES OF THE BUILDING BIVELOFE (AT LOWEST FLOOR, EXTERIOR WALLS, AND ROOF).
 THE CONTINUOUS AR BARRER SHALL BE DESIGNED TO RESIST FOSTIVE AND RECATIVE PRESSURES FROM WIND, STAXE EFFECT, AND MECHANCAL
VETILITATION

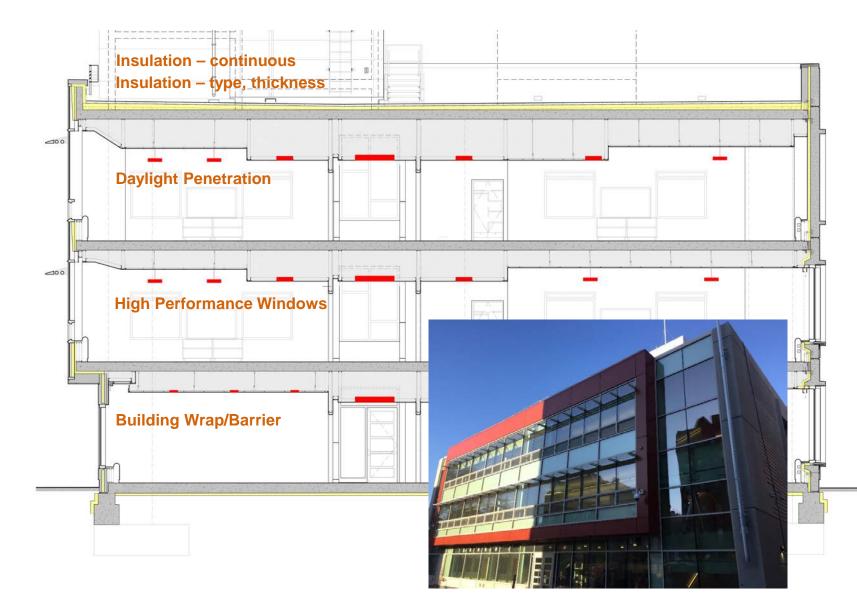
DOORS AND ACCESS OPENINGS TO SHAFTS, CHUTES, STAIRWAYS, AND ELEVATOR LOBBIES


JOINTS, SEAMS, CONNECTIONS BETWEEN PLANES, AND OTHER CHANGES IN AIR BARRIER MATERIALS.

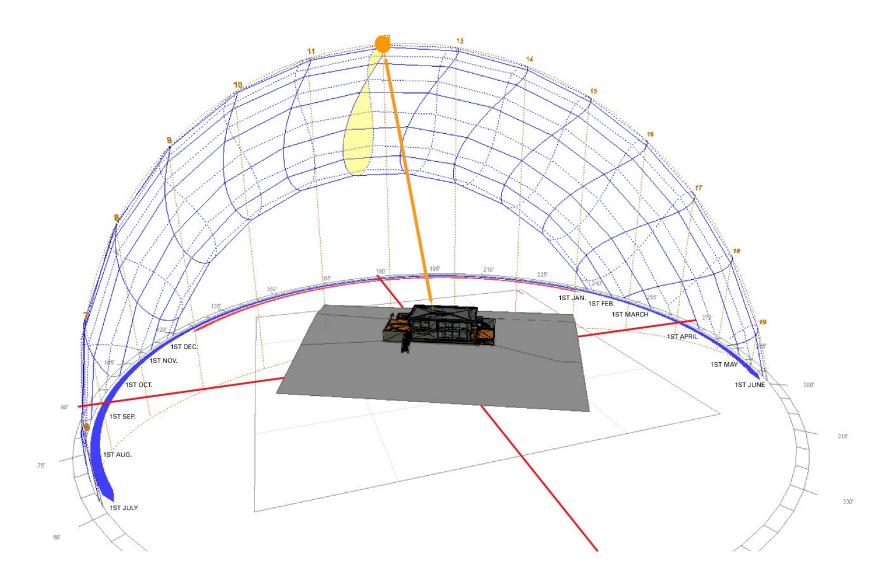

(\$4.3.1.2) AR BARRIER INSTALLATION / PENETRATIONS 1. THE FOLLOWING AREAS OF CONTINUOUS AIR BARRIER IN THE BUILDING ENVELOPE SHALL BE WRAPPED, SEALED, CAULKED, GASKETED, OR TAPED IN AN

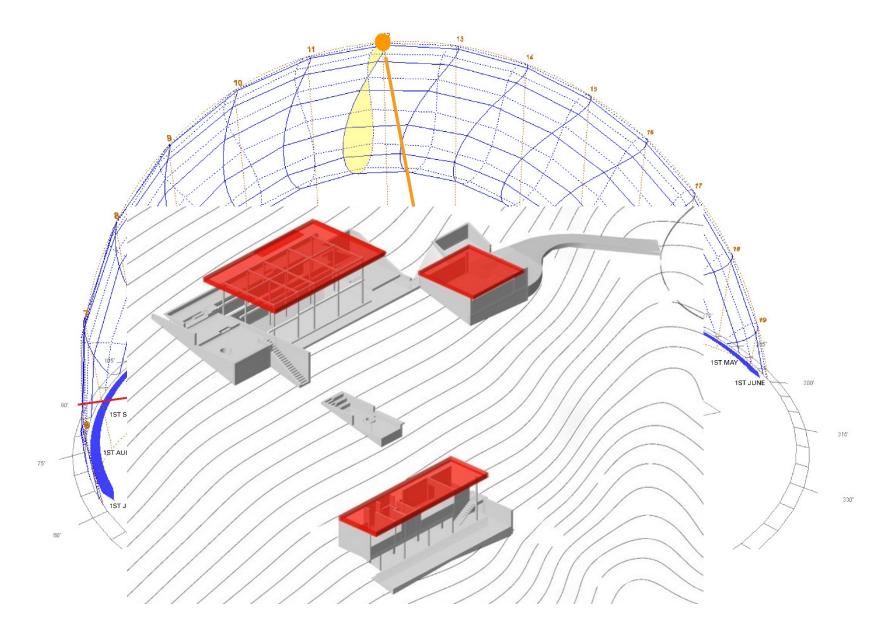
OPENINGS FOR EXTERIOR STAIR BULKHEADS, ELEVATOR DOORS, AND SMOKE HATCHES SHALL BE GASKETED, WEATHERSTRIPPED OR SEALED.

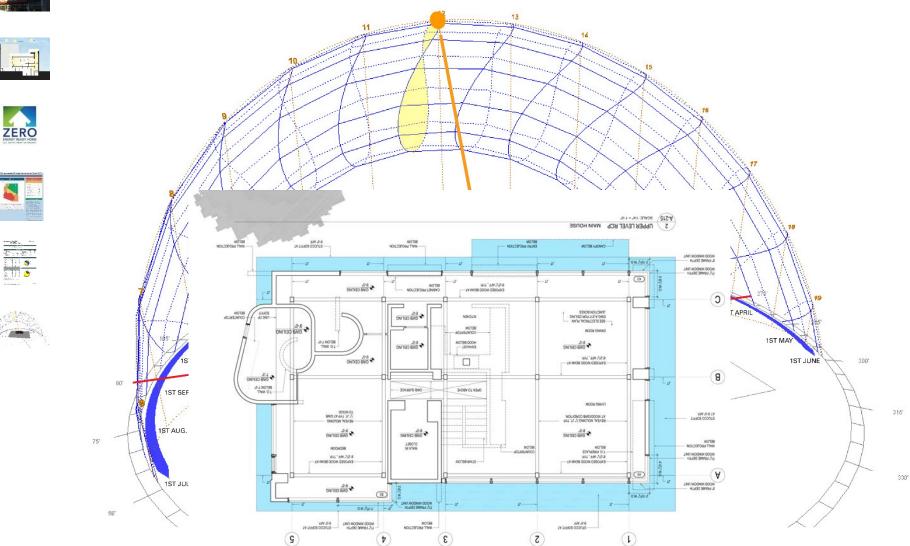
STAIR AND ELEVATOR SHAFT VENTS AND OTHER OUTDOOR AIR INTAKES AND EXHAUST OPENINGS INTEGRAL TO THE BUILDING ENVELOPE SHALL BE EQUIPPED WITH NOT LESS THAN A CLASS I MOTORIZED, LEAKAGE-RATED DAMPER WITH A MAX LEAKAGE RATE OF 4 CEM/SE AT 1.0 IN WG.



BUILDING ENVELOPE MODELING – INTERIOR AFFECTS







Approaching Zero-Energy in Commercial Structures (or any type for that matter)

Climate Zone
 Building Envelope
 Insulation – R Value
 Fenestration – U-Value and SHGC
 Air/Vapor Barriers
 Lighting and Power
 Mechanical System Efficiency

 MDSzerbaty Associates Architecture LLC

 3075 S Moning Sky Drive Cottenave Az 8936 P928 993 4094

 3075 S Moning Sky Drive Cottenave Az 8936 P 212 382 9286 mdsnyc.com

5. Energy Modeling vs Prescriptive 6. Passive Design Considerations Pre-K Center, Brooklyr, New York